ar X iv : m at h / 05 10 49 3 v 1 [ m at h . D G ] 2 3 O ct 2 00 5 REFLECTION IN A TRANSLATION INVARIANT SURFACE

نویسندگان

  • Brendan Guilfoyle
  • Wilhelm Klingenberg
چکیده

We prove that the focal set generated by the reflection of a point source off a translation invariant surface consists of two sets: a curve and a surface. The focal curve lies in the plane orthogonal to the symmetry direction containing the source, while the focal surface is translation invariant. This is done by constructing explicitly the focal set of the reflected line congruence (2-parameter family of oriented lines in R 3) with the aid of the natural complex structure on the space of all oriented affine lines. The purpose of this paper is to prove the following Theorem: Main Theorem: The focal set generated by the reflection of a point source off a translation invariant surface consists of two sets: a curve and a surface. The focal curve lies in the plane orthogonal to the symmetry direction containing the source, while the focal surface is translation invariant. In contrast to the focal surface, the reflected wavefront is not translation invariant , in general. There have been many investigations of generic focal sets of line congruences [1] [2] [5]. Rather than work in the generic setting, we compute the focal set explicitly in this special case. This we do by applying recent work on immersed surfaces in the space T of oriented affine lines in R 3 [3] [4]. The next section contains a summary of the background material on the complex geometry of T and the focal sets of arbitrary line congruences. It also details the reflection of a line congruence in an oriented surface in R 3. In Section 2 we solve the problem of reflection of a point source off an arbitrary translation invariant surface (Proposition 2). We then compute the focal set and thus prove the Main Theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : m at h / 05 02 09 4 v 2 [ m at h . D G ] 1 5 M ar 2 00 5 THE SECOND YAMABE INVARIANT

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.

متن کامل

ar X iv : m at h / 05 08 44 5 v 1 [ m at h . L O ] 2 4 A ug 2 00 5 INVARIANT MEASURES IN LUKASIEWICZ LOGIC

We prove that on the finitely generated free MV-algebras the only automorphism-invariant truth averaging process that detects pseudotrue propositions is the integral with respect to Lebesgue measure.

متن کامل

ar X iv : m at h / 06 11 45 2 v 1 [ m at h . A G ] 1 5 N ov 2 00 6 UNIRATIONALITY OF CERTAIN SUPERSINGULAR K 3 SURFACES IN CHARACTERISTIC

We show that every supersingular K3 surface in characteristic 5 with Artin invariant ≤ 3 is unirational.

متن کامل

ar X iv : m at h / 05 08 29 7 v 2 [ m at h . ST ] 3 O ct 2 00 5 CONVERGENCE OF ESTIMATORS IN LLS ANALYSIS

We establish necessary and sufficient conditions for consistency of estimators of mixing distribution in linear latent structure analysis.

متن کامل

ar X iv : m at h / 05 02 09 4 v 1 [ m at h . D G ] 4 F eb 2 00 5 THE SECOND YAMABE INVARIANT

Let (M, g) be a compact Riemannian manifold of dimension n ≥ 3. We define the second Yamabe invariant as the infimum of the second eigenvalue of the Yamabe operator over the metrics conformal to g and of volume 1. We study when it is attained. As an application, we find nodal solutions of the Yamabe equation.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005